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Abstraet--A model for isothermal homogeneous nucleation is proposed that improves the classical model. 
A quasiequilibrium distribution of clusters was calculated on a basis of the Frenkel'-Lothe-Pound theory. The 
dependence of the free energy of clusters on their size was represented by an interpolation formula relating the 
free energy of dimers and large clusters to which a notion of macroscopic surface tension is applicable, The 
nucleation rate and the dependence of the cluster temperature on their size were calculated by balance equations 
describing the heating of from a cluster due to the condensation of monomers and its cooling due to collisions 
with an ambient gas. It is shown that the nucleation rate in excess buffer gas is higher than for the pure condens- 
ing gas by approximately two orders of magnitude. The model adequately describes the experimental data for 
the nucleation of methanol supersaturated vapor. 

INTRODUCTION 

Starting from early fundamental studies described 
in [1--4], building an adequate cluster model for the cal- 
culation of the equilibrium size distribution of clusters 
remains the mainstream research in nucleation theory. 
This distribution is needed for the calculation of the 
nucleation rate. 

In the classical nucleation model, clusters are 
viewed as macroscopic drops; the stability of the drops 
depends on their size and the free energy of molecules 
(atoms) in the bulk and on the surface. Note that, 
despite its simplicity, the drop model in many cases 
gives results close to experimental data. However, for 
many systems, the difference between the nucleation 
rate predicted by classical theory and its experimental 
value reaches several orders of magnitude. Therefore, 
researchers turned to the dependence of the specific 
free energy on the cluster radius [5-9]. 

Lothe and Pound [10, 11] substantially advanced 
nucleation theory when they pointed out that a drop in 
the gas phase must have translational and rotational 
degrees of freedom. The drop loses six degrees of free- 
dom characteristic of an imaginary drop in the bulk of 
the condensed phase. Lothe and Pound's findings 
formed the ground for the development of the molecu- 
lar approach to the nucleation problem [12-18]. How- 
ever, it should be mentioned that Frenkel' [4, p. 348] 
was the first to propose an expression for the quasiequi- 
librium concentration of clusters that takes into account 
translational and rotational degrees of freedom, but he 
did not use this expression for the calculation of the 
nucleation rate [4]. 

Another important problem in homogeneous nucle- 
ation theory is the energy exchange between clusters 

and ambient gas. In the classical model, the tempera- 
tures of clusters and ambient gas are considered the 
same. However, some experimental data and theoreti- 
cal findings (see [7, 19] and references therein) show 
that this is not the case. The process should be consid- 
ered nonisothermic. 

In our opinion, the nonisothermicity of homoge- 
neous nucleation was analyzed in most detail in [19], 
where nonisothermicity was taken into account by 
solving a system of kinetic equations of the mass and 
energy balance for water clusters consisting of less than 
200 molecules. This approach enables the calculation 
of the changes in the concentration and temperature of 
clusters of each size with time and, consequently, the 
flux (or the rate) of nucleation. However, the solution to 
this problem involves much calculation and is not illus- 
trative. In this work, we derived an expression for the 
rate of nonisothermic homogeneous nucleation, which 
is a simple modification of the classical expression [7] 
and automatically transforms to it when the tempera- 
tures of clusters and the ambient medium are the same. 

Predictive power of the model was illustrated by the 
example of the methanol vapor nucleation. This com- 
pound was chosen for the following reasons. One is that 
comprehensive experimental data on the nucleation rate 
over a wide ranges of temperatures and degrees of super- 
saturation are available for this compound [20--22]. Fur- 
thermore, some thermodynamic parameters of clusters 
containing from 2 to 256 molecules were theoretically 
obtained in [23-25], the accommodation coefficient for 
the addition of a methanol molecule to the bulk of liq- 
uid methanol at room temperature was calculated in 
[26], and the concentrations of dimers and larger clus- 
ters in methanol vapor were measured in [27, 28]. 
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THERMOCHEMICAL PARAMETERS 
OF CLUSTERS 

As already mentioned, the classical nucleation the- 
ory is based on the drop model of clusters. In this 
model, the basic parameter is the free energy of surface 
tension. However, the applicability of this parameter to 
small clusters, in which all or the most part of mono- 
mers are on the surface, is problematic [7, 14]. (Hereaf- 
ter, by a monomer is meant a single atom or molecule 
comprising a cluster.) 

Therefore, many researchers considered corrections 
for the dependence of the specific free energy on the 
cluster (drop) size [7, 8, 29-31]. Others attempted 
avoiding the use of the free energy of surface tension 
[14, 15, 17]. In these models, clusters are treated as 
large molecules whose thermodynamic parameters can 
be calculated by the methods of statistical mechanics. 
This approach sounds most reasonable, although it is 
difficult to put into practice: it is necessary to calculate 
the frequencies, dissociation energy, and geometry of 
clusters containing up to several thousands of atoms. 
This can be done with molecular dynamics methods 
(see [25] and references therein) but requires much cal- 
culation. 

An alternative approach is to construct interpola- 
tions describing the free energy of clusters as a contin- 
uous function of their size [8, 13, 14, 30]. The main idea 
of this approach is the expansion of the free energy (the 
chemical potential) of clusters in terms of their radii or 
i 1/3 (i is the number of atoms in the cluster). At i = I and 
i = 2, this expansion should give the free energy of 
monomers and dimers and transform into the expres- 
sion for the free energy in the classical drop model 
when i , oo. However, as mentioned in [32], the 
requirement to the interpolation formula to give the free 
energy of monomers is physically unjustified because 
monomers are not clusters. This is evident when mono- 
mers are represented by atoms, which, unlike clusters, 
have neither rotational nor vibrational degrees of free- 
dom. Therefore, we used the idea of the approach 
developed in [8, 30] but abandoned the extension of the 
free energy interpolation formula to monomers. 

In the description of thermodynamic parameters of 
clusters, their translational, rotational, and vibrational 
degrees of freedom and the partition function of substi- 
tution were explicitly taken into account�9 

According to the mass action law, the equilibrium 
concentration of clusters with a size of i can be calcu- 
lated by the expression 

C i = q i ( C l / / q l , g )  i, ( I )  

where qi is the partition function for the cluster contain- 
ing i monomers, and ql g is the partition function for a 
monomer in the gas pha'se. In expression (1), the mono- 
mer concentration Cl is determined by the experimental 
conditions, and qi, g is calculated by the standard proce- 
dure [33]. An expression for qi can be derived within 

the framework of a somewhat modified Frenkel ' -  
Lothe-Pound method [4, 10, 11]. Let us represent a 
cluster as a piece of the condensed phase having surface 
and external rotational and translational degrees of 
freedom. For this cluster, we can write [6]: 

qi qi, transqi, rot( q I, g "~ 
- ~ l - - l ~ , s ,  (2 )  

qrep \ C l ,  sat. / 

where q~i, ~ is a factor that accounts for the contribution 
of the surface, Ci, sat is  the concentration of monomer 
saturated vapor, and qre- is the partition function of 

�9 V 
replacement. The partition functions for the cluster 
over its external translational, qi, trans, and rotational, 
qi, rot, degrees of freedom have the form [6]: 

q i ,  trans = ( 2 1 t i m l k T / h 2 )  1"5, (3) 

2 15  0 5  
qi, rot= ( 8 n l i k T / h ) n  ' ,  (4) 

where li is the inertia momentum of a spherical cluster 
with a size of i: 

I i = (2 /5 ) i5 /3ml  v ~ 1 3 ( 3 / 4 x )  213. (5) 

Here, ml and Vl are the weight and the volume of the 
monomer in the condensed phase. The partition func- 
tion of substitution is introduced to account for the loss 
of six internal degrees of freedom by the cluster trans- 
ferred from the condensed phase into the gas phase 
[4, 10, 11], in which these degrees transform to three 
translational and three rotational degrees (see below). 

Combining (1) and (2), we obtain 

C i [qi, transqi, rot~( 1 "~_ 
Ci = Cl sat~ C - ~  ?~C--'~'~.. / tpi s" (6 )  

' [ I, satqrep J 1, sat- / ' 

The expression for ci is written in the form that is con- 
venient for comparison with the classical formula. 
Indeed, by setting the term in braces to unity and tpi, s = 

exp[-(36n)  1/3 v~/3 (5i213/kT], where t~ is the free energy 
of surface tension, we obtain the classical formula for 
the quasiequilibrium concentration of clusters [34]. 
The correction to the partition functions for the surface 
effects can be represented as [4] 

( Gi s'~ 
q ,,s = 

(7) 

where 

Gi, s = Ei, s(0) - TtYPi, s, (8) 

Oi, s = Si, s -  [Ei, s(T) - Ei, s (O)] /T .  (9) 

Wepostulatethat, wheni  ,, oo, Gi, s = Glis, Ei, s(O) = Eli S, 
and ~i, s = ~lis. Here, i s is the number of surface mole- 
cules; and G l, El, and ~1 are the changes of the free 
energy, internal energy, and reduced thermodynamic 
potential corresponding to the transfer of a molecule 
from the bulk of the macroscopic condensed phase to 
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its surface. For methanol, whose vapor nucleation is 
taken as an example to illustrate predicting capabilities 
of the model, we obtained (from the data [35]) 

E I = 5.96 x 10 -21 J/molecule, (10) 

~1 = (2.31 x 10 -17 

+ 1.84 x 10-~gT) J/molecule -1 K -I. 

For dimers, the E2,s (0) and ~2,~ values can be deter- 
mined from the experimental data [27, 28] or calculated 
by statistical mechanics methods from the results of 
quantum-mechanical calculations [23, 24]. 

We used the dissociation energy of dimers E2 = 
4.0 x 10 -20 J/molecule; this value was obtained by 
quantum-chemical calculations in [24]. The frequen- 
cies and geometry of dimers can also be calculated by 
quantum-chemical methods; however, we have not 
found such data in the literature. Therefore, we calcu- 
lated the partition functions for dimers as follows. First, 
we calculated the frequency of the stretching vibrations 
of hydrogen bonds between monomers (CH3OH mole- 
cules) on the assumption that the intermolecular poten- 
tial is described by the Lennard-Jones formula: 

( 18D0 ,)05 
v = ~, 2 ~  ) ' (12) 

/~ aoL, meff 

where Do is the dissociation energy of a hydrogen bond, 
and maf is the reduced mass, do is the intermolecular 
distance in the dimer, and C is the speed of light. We 
obtained v = 145 cm -1. Then, we constructed three 
models of dimers: rigid, normal (moderately rigid), and 
loose. In the first case, all frequencies (except the inter- 
nal frequencies of monomers) were taken equal to the 
frequency of stretching vibration of hydrogen bonds. In 
the second model (by analogy with known molecules 
consisting of two identical groups, e.g., ethane mole- 
cules), the frequencies of rocking and torsional vibra- 
tions were respectively taken about two and four times 
lower than the frequency of stretching vibrations of 
hydrogen bonds. The distance between the centers of 
molecules in dimers was taken equal to that for the con- 
densed phase. The minimum inertia momentum was 
taken equal to the double minimum inertia momentum 
of methanol molecules. In the third model, each of two 
monomers was considered freely rotating around its 
axis; the spacing between the molecules was identical 
to that used in two other models. By equating the parti- 
tion functions obtained for these three models of 
dimers to expression (5) at i = 2, we obtained three 
equations for ~2~s. In the temperature range considered 
here, these equations can be approximated by the fol- 
lowing expressions (in J molecule -1 K-I): 

~2,s = -(5 .72 + 0.0144T) x l0  -23, (13) 

(I~2, s = - (1 .52 + 0.0118T) x 10 -23, 

~2,s = (11.6 + 0.0237T) x 10 -23. (15) 

As can be seen, these expressions give different numer- 
ical values but show similar temperature dependences. 
With the use of the above value of the dissociation 
energy of clusters, the best agreement between the cal- 
culated and experimental [27] values of the concentra- 

(1 l) tion of dimers in methanol vapor was reached with the 
model of moderately rigid dimers (the maximum devi- 
ation was at most a factor of two, and, at room temper- 
atures, close agreement was obtained). Therefore, in 
the calculation of the nucleation rate, we used expres- 
sion (13) without further fitting. 

Note that a change in the thermodynamic potential 
corresponding to the transfer of a monomer from the 
macroscopic phase onto the "surface" of a dimer is neg- 
ative. The problem is that, in the case of dimers, the 
model of spherical clusters within our unified approach 
yields substantially overestimates the value of the rota- 
tional partition function. Because expression (14) was 
obtained from the comparison with the "diatomic" 
model of dimers, it takes into account this difference of 
the rotational partition functions and the difference of 
the frequencies in the macroscopic phase and in dimers. 
To construct an interpolation function, we can use the 
expansion in terms of cluster radii or else in the cubic 
root of the number of monomers in clusters, i 1/3, retain- 
ing two first terms. The expansion is identical in its 
form to the Tolman formula [5, 6]. Similar expressions 
for the correction coefficient to the macroscopic energy 
of surface tension were used in [29-31]. However, 
physically, it seems more correct to express the dissoci- 
ation energy not as a function of the number of mono- 
mers i but in terms of the number of additions i - 1 
required for cluster formation [13]. Thus, we have 

Ei, s(0 ) = a + b ( i - l ) 2 / 3 + c ( i - 1 )  I/3 (16) 

~i,s = d ( i -  1 )2 /3+e( i  - 1) 1/3. (17) 

The coefficients a - e are chosen for the following rea- 
sons. For large clusters (i _-- oo), the excess free 
energy should asymptotically approach the energy of 
surface tension that is proportional to the number of 
surface atoms. The coefficients at ( i -  1) 1/3 in (16) and 
(17) are chosen so that, at i = 2, the formation energy of 
clusters from the condensed phase is equal to the for- 
mation energy of dimers at 0 K: E2, s = 2E=, 1(0) - E2 at 
Oi, s = 02, s. Thus, we obtain 

El, s (0)  = Eo., 1(0) + (36~)1/3E I (i - 1 )2/3 
(18) 

+ leo., 1(0) - (36n)l/3El - E2](i - 1 )1/3, 

~i,s = (36~)1 /3~1( i -  1) 2/3 
(19) 

- [(36n)l/3q~l - q)2,s](i-  1)1/3, 

where E~ 1(0) is the energy for the monomer abstrac- 
(14) tion from the condensed phase at 0 K, and E 2 is the dis- 
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sociation energy of dimers at 0 K. The first term in 
expression (18) is due to the fact that the first step in the 
formation of clusters from the condensed phase is the 
vaporization of the first monomer to which other mono- 
mers are further added. 

Note that, unlike the first term, whose physical 
meaning is evident, the last term has ambiguous physi- 
cal interpretation. Therefore, the last term in expres- 
sions (18) and (19) can be represented in a more general 
form by changing the power 1/3 for the fitting parame- 
ter 7 (0 < ~t < 2/3), which can be determined by the cor- 
relation to experimental data or calculated by the 
molecular dynamics method. 

E=, 1(0) is determined from the condition that, at 
equilibrium, the chemical potentials of the condensed 
phase and the vapor are identical [33]: 

Bl, l = - k T l n  [ql, g /c l ,  sat] (20) 

or, in the expanded form, 

~t l, i = - k  T ln  [ q l, transql, rotql, vib 
(21) 

• exp (-E~., l ( O ) / k T ) / c l ,  sat], 

where B1, l is the chemical potential of monomers in the 
condensed phase; ql t~s, ql rot, and ql. rib are the trans- 
lational, rotational, aJad vibi'ational partition functions 
for monomers in the gas phase; and other designations 
are standard or identical to those used above. Because 
the energy is measured from the state of the condensed 
phase at 0 K, lal, i can be represented as [33] 

T T 

B1,1 = ~Cl,  p d T -  T ~ ( C I , p / T ) d T ,  (22) 

0 0 

where C1, p is the heat capacity of condensed methanol. 
For methanol, the data on C1 p at low temperatures (down 
to 20 K) are available from [~3]. However, for other com- 
pounds, these data can be unavailable. Therefore, we used 
a simplified method for the determination of C~ .. Taking 
�9 , / a  

into account that, at absolute zero, C1, p = 0, the temper- 
ature dependence of C1, p can be represented as 

C1, p = A T  + B T  z. (23) 

The coefficients A and B were determined from tabu- 
r 

lated CI, p values and the entropy S ~ = ~' C l , p / T ) d T f o r  

the liquid phase at 298 K. The C1, p value determined 
from the temperature dependence thus obtained for 
methanol were close to the tabulated data [35]. More- 
over, the E~, 1(0) values determined by expression (21) 
over a wide temperature range (220-290 K) were virtu- 
ally identical (E** 1(0) = 7.17 • 10 -2~ J/molecule), which 
indirectly supports the correctness of the method. 

The partition function of replacement was calcu- 
lated according to Frenkel' [4, p. 347] on the basis of 
the chemical potential taken over six vibrational 

degrees of freedom for the condensed phase. In clus- 
ters, as in the liquid, each molecule is characterized by 
the internal (vibrational) degrees of freedom the hin- 
dered rotational degrees of freedom (torsional vibra- 
tions), and Debye-type vibrations. In atomic liquids, 
the first two types of degrees of freedom are absent. It is 
clear that the number of vibrational and rotational 
degrees of freedom in clusters is identical to that for the 
condensed phase with the same number of molecules. 
Thus, the transfer of a cluster from the condensed to gas 
phase results in the disappearance of the Debye-type 
vibrations�9 However, calculation by the equation [4] 

i- ['h~-r -1 
Bt, l /n  - k T l n  |1 = t_ - exp~,~-~)j (24) 

(here, n = 3, 5, and 6 for atoms, linear, and nonlinear 
molecules, respectively; the formula takes into account 
that the energy is measured from the state of the con- 
densed phases at 0 K) shows that the average frequency 
is close to the Debye frequency (e.g., for methanol, the 
difference varies within 20-30% depending on the tem- 
perature). The Debye frequency was calculated by the 
standard procedure [33]; the velocity of transverse 
waves was taken equal to half the velocity of longitudi- 
nal waves. Note that 9 characterizes the average fre- 
quency of the Debye and hindered rotational vibrations 
of monomers in the condensed phase because, at the 
temperatures characteristic of the nucleation study, 
internal rotational degrees of freedom of monomers are 
virtually hindered. Thus, 

{.h9._]_6 
q~p = 1-exp~,~--~)j = e x p [ - 6 B l , ~ / ( n k T ) ] ,  (25) 

where I.t1.1 can be calculated as described above or 
taken from published data. 

KINETIC NUCLEATION MODEL 

In classical nucleation theory, the growth of clusters 
is represented as a set of consecutive steps of addition 
and vaporization of molecules�9 The growth due to col- 
lisions between clusters is not considered, which is evi- 
dently true when the concentration of clusters is much 
lower than the concentration of monomers. This prob- 
lem was recently considered in [36], and I will briefly 
discuss it at the end of this article. 

According to [4], 

d f i / d t  = J i -  l - Ji, (26) 

where Ji- 1 is the flux of clusters at the point i, i.e., the 
number of clusters in unit volume transferred along 
the size axis from the point i - 1 to the point i per unit 
time: 

+ 

J i -  1 = ki n ln i_  1 - k~(Ti)ni .  (27) 
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Here, n~, n i_ 1, and n i are the concentrations of mono- 

mers and clusters; and k~ and k 7 are the rate constants 
of the formation and vaporization of clusters with a size i. 
In classical nucleation theory, the process is considered 
steady-state. For this purpose, it is assumed that suffi- 
ciently large clusters G + 1 (with a much larger size 
than the critical) are instantaneously removed, and G + 1 
monomers come into the system instead of each of the 
removed clusters. Thus, the concentrations of mono- 
mers and clusters are time-independent; mathemati- 
cally, this corresponds to the condition dfi/dt = 0 (i = 2, 
3, 4 . . . . .  G) or 

J2 = J3 = J4 -" . . .  = J i  = . . .  = JG = J .  (28) 

Because nucleation releases heat, it is evident that 
the temperature of clusters will be higher than the tem- 
perature of the ambient gas. Let us assume that the tem- 
perature of clusters varies with their size and is identi- 
cal for all clusters of the same size [19]. Let us also 
assume as usual [7] that the accommodation coefficient 
e for the addition of a monomer to a cluster does not 
depend on the cluster temperature. In this case, the 
vaporization rate V~ for the cluster with the temperature 
T i can be represented as 

kT(T~) = kT(T) V;(T, T~), (29) 

V i ( T ,  T i )  = exp[(Ea, i ( 1 / T -  l / T i ) / k ] ,  (30) 

where k7 (T) is the vaporization rate constant for the 
cluster at the ambient gas temperature, Ea, ~ is the effec- 
tive activation energy, k is the Boltzmann constant, and 
Ti is the temperature of clusters with a size of i. 

To calculate the steady-state nonisothermic nucle- 
ation rate, let us use the set of algebraic equations 

+ 

J = k2nln l - k~V2n2 ,  

~ 1 7 6 1 7 6 1 7 6 1 7 6  . . . . . . .  ~ . . . . .  ~ 1 7 6  

j =  + 
ki  n l n i - 1  - k TV in i ,  (31) 

�9 . . . . .  ~ 1 7 6 1 7 6  . . . .  ~ . . . . .  ~ 1 7 6 1 7 6 1 7 6  

+ 

J = k G + l n l n  G. 

The last equation involves a single term because, 
according to the formulation of the problem, the clus- 
ters of the size G + I are instantaneously removed, and 
their concentration is equal to zero. Using the designa- 
tion Ui = ni /c i ,  where ci is the equilibrium concentration 
of clusters of the size i at the concentration of mono- 
mers nl = cl, and the condition for thermodynamic 
equilibrium 

k~ClCi-1 = kT, ci, (32) 

we arrive at 

J / ( k 2 c l c l )  = U i -  U2V2, 

+ 

J / ( k i C l C i _ l )  = U i _  1 - U i V i ,  (33) 

~ 1 7 6 1 7 6 1 4 9 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 4 9  . . . .  ~ 1 7 6 1 4 9 1 7 6 1 7 6  

§ 
J / ( k c + l c l c c )  = U c. 

At i = 2, U i_ l = nl/cl = 1 by definition. Upon multiply- 
ing the first, second, third, and last equations by V~ = 1 
(it is assumed that the temperature of monomers is 
equal to the temperature of the gas), VIV 2, VIV2V 3, and 

I'Ll__ respectively, and summing the left-hand and V j,  1 

right-hand sides of equations (33), we have 

J V j  / ( k ~ §  i = 1 (34) 
i =  I L - \ j =  1 / '  

o r  

J = V j  / ( k + + l C l C i )  . (35) 

At the constant temperature of clusters equal to the 
temperature of ambient medium, Vi - 1 at i = 2, 3, 4 . . . . .  
G, and expression (35) transforms into the classical for- 
mula for the nucleation rate. Under nonisothermic con- 
ditions, Vi > 1, and, as is easily seen from (35), the 
nucleation rate is lower than for isothermal conditions. 
This is reasonable because, for overheated clusters, the 
rate of the reverse process of their vaporization is 
increased. 

To use formula (35), the k~§ l,  ci, and V i parameters 

should be known. The parameter ki++t can be repre- 
sented as a product of the collision-frequency factor of 
the cluster (the monomer at i = 1) with monomer mol- 
ecules by the accommodation coefficient e; we used 
e = 0.8 [26]. Thus, 

k~(T) = eZl (3OO)(T/300) l /2 i  2/3. (36) 

The collision frequency factor at 300 K, Zl(300), was 
calculated by the standard procedure [37]�9 The equilib- 
rium concentrations were calculated by formula (6) 
from the preceding section. 

To calculate V i, it is necessary to know the effective 
activation energy of vaporization of the clusters, Ea, ~, 
and their temperature T i (it is assumed that the temper- 
ature of the ambient gas is given). We calculated the 
effective activation energy by the equation [38] 

Ea, i = R T 2 [ d ( I n k ~ ( T ) ) / d T ] ,  (37) 

where 

kT,(T) + -l = k i ( T ) C l C i _ l C  i , (38) 

and Cl, c~_ 1, and c~ are the given concentration of mono- 
mers and the respective equilibrium concentrations of 
the clusters. 
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To calculate the temperatures of clusters of each size 
T;, material balance equations (31) should be supple- 
mented by energy balance equations. In the general 
case, these equations are similar in their form to the 
equation used in [19]. However, in this work, I explic- 
itly took into account the fact that the temperature of 
vaporizing monomers is equal to the temperature of 
clusters, i.e., higher than the temperature of ambient 
medium. We also used a different method for the calcu- 
lation of the heat transfer rate from clusters to mole- 
cules of a buffer (noncondensable) gas (the method is 
based on the stepwise activation model, which is often 
used in the theory of monomolecular reactions). 

The temperature of clusters can be calculated by 
two methods: either as in [19] (see Appendix) or in a 
simpler way as described below. Let us consider a rep- 
resentative cluster moving along the size axis. The time 
it resides in the group of clusters of size i is 

xi = n i /J ,  (39) 

where n~ is the concentration of clusters of size i, and 
J is the nucleation flux. During this time, the represen- 
tative cluster takes part in a certain number of decom- 
position acts to form a cluster of size i - 1 and the same 
number of the formation acts (not counting the act, in 
which this cluster was originally formed). Because the 
temperature of the cluster is higher than the tempera- 
ture of the ambient gas, each pair of the decomposi- 
tion-addition acts will take away some portion of the 
energy from the cluster: 

AQ = Cp, g(T i -  T). (40) 

Thus, the heat removed from the cluster via this mech- 
anism for the time x i is 

Qvap, i(T, Ti) = [Cp, g (T i -  T)k~Vi]ni/J.  (41) 

The cluster can also lose heat via collisions with mole- 
cules of the buffer (noncondensable) gas; the energy 
thus removed for the same time is 

Qbuf, i( T, Ti) 

1" (42) 
~Z [M12AE e x p ( A E / k ( 1 / T -  1/T~))-  ~n~/J, 

= ~ iL ,~ e x p ( A E / k ( 1 / T -  1/Ti)  ) + 1 J 

where Zi is the factor for the frequency of binary colli- 
sions, [M] is the concentration of the buffer gas, and 
AE is the energy removed at each step of the energy 
transfer within the framework of the step-ladder model. 
The term in braces was obtained in the framework of a 
modified step-ladder model [18] used in the theory of 
chemical and photoactivation [39]. 

Because the energy removed during a single nucle- 
ation act (the advance of the cluster by one step on the 
size scale) under quasistationary conditions must be 
equivalent to the heat evolved, the balance equation can 
be written as 

where 

J = Fini, (43) 

F i = Cp, g ( T i -  T)k~Vi 
Li 

(44) 
,7 r,,,,12AE exp( A E /  k ( 1 / T -  1 /  Ti) ) - 1 
L,  t lv,  j 1/r,)) u 1" 

The evolved heat is L i = E i - hi l(T) + hi R(T), where 
E i is the energy of the monomer abstraction from a 
cluster of size i at 0 K, and hi i(T) and hi (T) are the 
enthalpies per molecule m the hqmd and gas phases, 
respectively. 

Using (31), (32), and (43), we obtain the recurrent 
formula for Fi: 

+ -1 
( . k iViClCi-1)  

Fi- l = k~cl 1 + m (45) 
Fici 

The clusters of the largest size (G) are not formed by 
the decomposition of clusters of size G + 1 because 
these clusters, according to the problem formulation, 
are instantaneously removed, and their concentration is 
equal to zero. Hence, 

+ 
J = k~+lnlnc (46) 

and, with the allowance for (43), we obtain 
+ 

F c = ko§ (47) 

The temperature of clusters of each size was calculated 
as described below. By equating (44) to (47) at i = G 
and solving the respective transcendental equation, we 
determined the temperature T c. Then, we find F o_ l 
using recurrent formula (45) by equating it to (44) at 
G -  1, and determine T o_ i. The recurrent procedure 
was repeated until the size of dimers (i = 2) was 
reached. The V~ values are calculated in parallel. The 
summation in (35) was performed in the reverse order, 
from i = G to i = 2. Therefore, to calculate the depen- 
dence of the temperature on the cluster size and the 
nucleation rate in one calculation, we transformed (35) 
into the form 

J - k++1r162 . (48)  

. " i = G \  j = l +  

For the sake of retention of the structure of addition 
terms, we formally set V o § ~ = 1. It is clear that this will 
not affect the product under the summation sign, as 
well as the fact that the product is taken from j = 2 
instead of j  = 1 because V 1 = 1 (see above). 

RESULTS AND DISCUSSION 

In the calculation of the nucleation rate of methanol 
supersaturated vapor in the framework of the above- 
described model, we used the following parameters: 
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Density (g/cm3), dMe= 0.81015 - 1.0041 x 10-3x- 
1.802 X 10-6x 2 - 16.57 x 10-9x 3, where x = T -  273.15 [31 ]. 

Pressure of saturated vapor (bar), Psat = exp(58.434 - 
6341.267/T- 5.611nT) [31]. 

Surface tension (mJ/m2), a = 36.59 - 1.417 x 10-2T - 
1.32 x 10-4T 2 (the interpolation of the data [35]). 

Enthalpy and the heat capacity of liquid methanol at 
298.15 K (both in J mol -l K-~), S O = 126.7 and Cp = 
8i .6 [401. 

Accommodation coefficient, e = 0.8 [26]. 

Energy of the monomer abstraction from the meth- 
anol macroscopic phase at 0 K, E .  1(0) = 43.16 kJ/mol. 

The energy step in the step-ladder model of the 
energy transfer by collisions of a cluster with argon 
atoms, AE = RT. 

The only fitting parameter in the model is ),, which 
characterizes the degree of the deviation of the free 
energy of a cluster from that used in the drop model. We 
could take 7 = 1/3 as in (18) and (19); however, in this 
case, the free energy of dimers would not agree with the 
experimental data. Moreover, as noted above, there is 
no physical reason to set ),= 1/3. We fitted the model to 
the results of a single experiment (no. 3 in the table) and 
obtained ~, = 0.41. It will be of interest to see further 
whether this value is correct for other systems. The J 
values calculated with ), = 1/3 are on the average higher 
by two orders of magnitude. 

Figure 1 compares the dependence used here for the 
reduced dissociation energy of clusters calculated per 
molecule versus the cluster size and the results of theo- 
retical calculations. As can be seen, the scatter of values 
obtained by different methods is rather high. Note that 
dependence (18) used in this work represents some 
averaged trend. 

The calculated values of the nucleation rate for 
methanol supersaturated vapor are correlated to the 
experimental data [20] in the table. The measured and 
calculated values are in good agreement, especially tak- 
ing into account that the experimental data and the pre- 
dictions of classical nucleation theory are different. At 
first sight, the situation seems paradoxical: classical 
theory does not take into account external degrees of 
freedom of clusters; therefore, it should give a lower 
concentration of critical clusters and, consequently, a 
lower nucleation rate in comparison with those 
obtained in the framework of our model. However, as is 
seen from Fig. 2, the dependence for the free energy in 
(7) calculated in the framework of our model is far 
above that for the classic model; this explains the 
apparent difference. 

The developed model also adequately describes the 
experimental data on the dependence of the critical 
degree of supersaturation (s) on temperature (Fig. 3) 
obtained in a diffusion chamber (J ~ 1 cm -3 S- I ) .  The 
observed difference between the experimental data and 
the predictions of our model is possibly explained by 
the fact that, under conditions of slow nucleation, the 

Ei, disliE,,~, 1(0) 
i.0 

g ~  S ~ 
0 0 ~ ' ~  - 0.8 o y 

or 
o.4 / :43 
0.2 [] 

I I I I I 
0 1 2 3 4 5 

I 
6 

In/ 

Fig. 1. Effect of the cluster size on the dissociation energy 
of methanol clusters calculated per monomer and divided by 
the vaporization energy per molecule for the bulk of metha- 
nol. The solid line represents the results of calculation by 
expression (18) (this work); the dashed line corresponds to 
Monte-Carlo calculation [25]. The data of quantum-chemi- 
cal calculation (1) [23] and (2-4) [24] were used. 

Gi, s/kT 
400 

300 

200 

100 

1 

2' 

I I I I 

50 100 150 200 
i 

Fig. 2. Effect of the cluster size on the free energy of meth- 
anol clusters at (1, 1') 229.31 and (2, 2') 274.63 K. Solid 
lines represent the results of calculation by the model pro- 
posed in this work; dashed lines correspond to the drop 
model. 

system is highly sensitive to the presence of foreign 
condensation nuclei [7]. 

The curves for the quasiequilibrium (ci) and quasis- 
tationary (ni) concentrations of clusters and overheat- 
ing ATi = Ti - T as functions of the cluster size are pre- 
sented in Fig. 4 for the two limiting cases: high super- 
saturation at a low temperature and low supersaturation 
at a high temperature (see the table, experiments 12 
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S 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 
200 

=1 
*2 

I I I I I I 

220 240 260 280 300 320 
T,K 

Fig. 3. Critical degree of supersaturation for the condensa- 
tion of methanol in a diffusion chamber vs. temperature. 
The experimental data from (I) [21] and (2) [22] are shown 
by different points. The solid line represents the results of 
calculation by the model developed in this work; the dashed 
line corresponds to classical model [21]. 

and 8). As seen from Fig. 4, the deviation of the temper- 
ature of clusters from the temperature of the ambient 
gas becomes noticeable in the region of critical sizes 
and increases with increasing the number of atoms in 
clusters. A deviation of n i from ci is observed in the 
same region. Physically, this means that, in this region, 
due to low cluster concentrations, there is a noticeable 
resistance to the nucleation flux. In the undercritical 
region characterized by a high concentration of clus- 
ters, the forward and back processes are virtually in 
equilibrium; therefore, ni and  c i coincide very closely. 

Figure 5 demonstrates the effect of the concentra- 
tion of the buffer (noncondensable) gas on the nucle- 
ation rate for the same limiting conditions (table, exper- 
iments 12 and 8); these conditions were used in [20] in 
the measurement of the nucleation rate. (In Fig. 5, the 
nucleation rate is related to the respective value 
obtained for the isothermal model of the process.) The 
effect is of two orders of magnitude. At high concentra- 
tions of the buffer gas, the temperature of the clusters is 
equal to the temperature of the ambient gas. As the 
buffer gas concentration is decreased, the situation 
changes and, in the limiting case, only the molecules of 
condensing gas (monomers) are responsible for cool- 
ing. Figure 6 presents temperature profiles as functions 
of the cluster size at different degrees of dilution. It is 
seen that, even at a methanol concentration of about 
10-1-10-2%, the temperature of clusters differs from the 
temperature of the ambient gas; as a consequence, the 
nucleation rate decreases. 

It is of interest that, in the vicinity of the limiting 
size G, especially at i = G, the temperature of clusters 
sharply increases. This is due to the fact that, in this 

Iogci, Iogn i, cm -3 
A T  i, K 

I 15 

10 

5 

-5 
30 

25 

20 

15 

(a) 

I 1 2 

I I I I 

(b) 
! 

/ 
/ 

/ 
11 

I 
I 

1 0 ~ \  / / 
/ I \ 

0 50 1 O0 150 200 
i 

Fig. 4. Curves for the (I) quasiequilibrium (ci), (2) quasi- 
stationary (ni) concentrations, and (3) the overheat AT i of 
methanol clusters relative to the ambient gas as functions of 
the cluster size at (a) T = 274.63 K and s = 2.39 and 
(b) T= 229.31 K and s = 4.07 (table, experiments nos. 8 
and 12). 

region, the concentration of clusters decreases with the 
size more sharply than far from G (see Fig. 4) because 
of the removal of clusters of size G + 1. Therefore, the 
rate of back processes decreases, and clusters are 
highly overheated. A change in the G value is accompa- 
nied by a respective shift of the region of the increased 
overheat. Note that, in the region G > 2i*, where i* is 
the critical size, the changes in G virtually have no 
effect on the nucleation rate under both isothermic and 
nonisothermic conditions. 

The calculation shows that the effect of the overheat 
only slightly depends on the degree of supersaturation 
(Fig. 7). This is probably because the nucleation rate is 
proportional to the concentration of clusters in the crit- 
ical region [4, 7]. In this case, the heat loading of a clus- 
ter virtually remains unchanged. 
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log (J]Jisotherm) 
0.5 

-0.5 

-1.5 

- 2 . 5  I I I I 

- 5  - 3  -1  1 
log ([CH3OH]/[Ar]) 

1 
2 

AT i, K 

8 

2 

0 

4 

3 

2 

.31 

50 100 150 200 
i 

Fig. 5. The effect of the dilution (with argon) on the nucle- 
ation rate of methanol vapor at two limiting temperatures 
and degrees of supersaturation: (1) T = 274.63 K, s = 2.39, 
and (2) T= 229.31 K, s = 4.07. The points in the curves cor- 
respond to experiments 8 and 12 from the table. 

Fig. 6. The effect of the dilution (with argon) on the profile 
of the overheat (AT/) of methanol cluster against the cluster 
size: [CH3OH]/IAr] is equal to (1) 10 -4, (2) 10 -3, (3) 10 -2, 
and (4) oo. 

To estimate the contribution from the collisions 
between clusters into the total nucleation flux, I calcu- 
lated all collisions between clusters that lead to the for- 
mation of  overcritical clusters. The maximum contribu- 
tion o f  these collisions is equal to - 2 0 %  of  the flux that 
is due to the consecutive addition Of monomers.  How- 
ever, this value is substantially overestimated because it 
does not take into account  the backward flux from the 

overcritical region, especially when we consider that 
the basic contribution into the additional flux is due to 
the addition o f  dimers to the precritical clusters of  size 
i* - I. For  water, the contribution o f  cluster-cluster  col- 
lisions is 10% [36]. 

The number  of  parameters in the developed model is 
greater than for its predecessors. In particular, it addi- 
tionally includes thermochemical  parameters o f  

The experimental [20] and calculated values of the nucleation rate J for methanol vapor (Jcl and Jtw are the results of calcu- 
lations by classical theory [20] and the model proposed in this work, respectively) 

I 
Expe- s* T, K Jexp Jtw I JcJ Expe- 
riment riment 

cm-3 s-I 

1 2.61 272.02 8.0 • 107 

2 2.66 271.49 2.3 • 108 

3 2.71 270.86 8.4 • 10 s 

4 2.58 272.32 3.9 • 107 

5 2.54 272.86 1.1 X 107 

6 2.48 273.46 3.0X 106 

7 2.44 274.02 9.4• l0 s 

8 2.39 274.63 1.9• l0 s 

9 3.65 230.72 2.3 X 107 

10 3.79 230.25 7.4 • 107 

I1 3.90 229.87 4.5 • 10 s 

12 4.07 229.31 1.9 • 109 

13 3.49 231.29 2.8• 106 

* s is the degree of supersaturation. 

1.0 • 108 

3.2 • 108 

8.4 x 108 

4.8 x 107 

1.8 • 107 

3.3 x 106 

1.1 • 106 

2.2 x 105 

3.7 • 106 

2.4• 107 

8.8 • 107 

5.3 • 108 

3.4 • 105 

1.5 • 1017 14 

2.7 • 1017 15 

4.9 • 1017 16 

1.0 X 1017 17 

6.3 X 1016 18 

2.6 X 1016 19 

1.5 x 1016 20 

6.3 x 1015 21 

1.1 • 1012 22 

4.0 • 1012 23 

1.1 • 1013 24 

3.7 • 1013 25 

1.6 • 10 It 

S *  

3.34 

3.73 

3.82 

3.62 

3.34 

3.22 

3.07 

3.21 

3.14 

3.00 

2.92 

2.82 

T,K 

231.86 

238.32 

237.98 

238.75 

239.98 

240.51 

241.22 

255.47 

255.91 

256.81 

257.34 

258.00 

Jexp Jtw Jcl 

cm-3 s-I 

2.4 • 10 5 2.5 • 10 4 3.5 x 1010 

4.7 • 10 8 i.5 x 10 9 5.0 • 1014 

1.8 • 10 9 3.9 • 10 9 7.7 • 1014 

2 .4 •  8 3 .9 •  8 2.0• 

6.7 • 10 6 7.3 • 10 6 1.6 • 1013 

1.2 • 10 6 9.1 • 10 5 !4.4 • 1012 

1 .3•  s 4 .6 •  4 6 . 9 x 1 0  it 

7.5 • 10 8 7.4 x 10 9 6.6 • 1016 

3 .6 •  8 2 .6 •  9 3.7• 

2.7 • 10 7 2.5 • 10 8 9.4 • 1015 

5.3 x 106 5.4 • 107 13.8 • 1015 

7.5 x 105 3.6 x 106 1.2 x 1015 
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log J, cm -3 s-I 
20 

/ 1 " 1  1 

15 i i /  / / f ' ] 2  

10 / /  / / / ~  

' t / /  
I 

0 I I I I 

1.5 2.5 3.5 4.5 5.5 s 

Fig. 7. The nucleation rate vs. supersaturation for the infi- 
nitely dilute mixture (the solid lines) and pure methanol 
vapor (the dashed lines) at (1) 274.63 and (2) 229.31 K. 

dimers. However, because of widespread use of quan- 
tum-chemical calculation methods and due to the 
improvement of experimental methods for the investi- 
gation of small clusters, we may expect that these data 
will become readily available in the future. Purposeful 
experiments on the effect of the nature and the pressure 
of buffer gases on the nucleation rate are of great inter- 
est for further model testing. I plan to use this model for 
the description of nucleation in vapors of substances of 
different types. 

APPENDIX 

As seen from the above, the nucleation rate was 
determined on the assumption that the heat liberated at 
the elementary step of passing from the size i - 1 to i is 
removed from only the cluster with a size of i. This 
means that the heat flux between clusters, whose sizes 
differ by unity, was ignored. A more rigorous consider- 
ation can be performed with the use of the enthalpy bal- 
ance equations similar to those used in [19]: 

d[nihi (Ti )] /d t  

= ~i_lni_l[Ei + hi_l(Ti_ 1) + hi, g(T)] 

-o~in i[E i + h i_ I(Ti) + ht, g(Ti)] - ~ini[ hi( Ti) ] 

+ o~i+ lni+ l[hi(Ti+ 1)] -- Qbuf, i( T, Ti)ni = O, 

(49) 

+ + 

where ~i-1 ki nl, ~i nl, = = = ki+~ ~ = kTVi, ~i+1 

k~+l Vi+I; hi_l(T/_l), hi_ l(T/), hi(Ti), and hi(Ti+l) are 
the enthalpies of the clusters with sizes i - 1 and i at 
respective temperatures (at the points i - 1, i, and i + 1); 
and E i is the energy of monomer abstraction from a 

cluster with the size i. Qbuf, i(T) Ti) is given by the 
expression 

Qbuf, i( T, Ti) 

Z I M 1 2 A E e x p ( A E / k ( 1 / T -  1/Ti))  - 1 
= i, " ~ i ~ / T  1/ri))+l' 

(50) 

where L i = E i - hi i(T) + hi ~(T). Equation (49) was 
derived on the assumption that( in the decomposition of 
a cluster, the temperatures of the monomer and a 
smaller cluster are equal to the temperature of the initial 
cluster. This assumption is based on the model of 
homogeneous energy distribution used in the theory of 
unimolecular reactions [41 ]. 

Finally, we arrive at 

J[  E i - hl, l( T ) + hl,g(T)] 

- ~ in i [Cl ,g (T  i - T)] - Qbuf, i( T, Ti)ni 
(51) 

+ {[5iniCl,li(Ti+ l - Ti) 

- o ~ i n i C l , l ( i -  l ) ( T i - T i _ l )  } = O. 

In equation (51), the expression in square brackets does 
not take into account the difference between the enthai- 
pies of the monomers at the temperatures of the cluster 
and ambient gas. The heat capacity of the cluster was 
represented as a product of the number of monomers in 
the cluster and the heat capacity of monomers in the 
condensed phase Cl, i [19]; as shown by Monte-Carlo 
calculation [25], this is a rather good approximation. 

Expression (5 l) can be rewritten as 

J = ( F  i + AFi )n  i, (52) 

where F i is determined by expression (44), and 

A F  i = {o~in iCl , l ( i -  I ) ( T I -  7',._1) 
(53) 

-- ~ i n i C l ,  li(Ti+ 1 - Ti) } / L r  

As can be seen, expression (52) differs from simpli- 
fied expression (43) by the additional term AF i. Expres- 
sion (43) was derived on the assumption that the energy 
released by clusters of a given size is entirely removed 
into the ambient gas, but it is not transferred to clusters 
of nearest sizes. The additional term accounts for the 
energy transfer that occurs along the size scale. 

To estimate this effect, I first calculated the depen- 
dence of the overheat ( T i -  T) on the size i by simplified 
formula (43) and approximated the (Ti - T) vs. i depen- 
dence by the expression 

( T i -  T)  = a' exp( -b ' i -c ' ) .  (54) 

This expression provides us with a rather close approx- 
imation for the ( T i -  T) vs. i dependence. We substituted 
the dependence obtained into (53) and used (52) 
instead of (43) to calculate the nucleation rate and the 
dependence of (T  i - T) on i. For all experiments pre- 
sented in the table, the effect of the term in braces in 
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(53) on the nucleation rate is within 30%, which is 
insignificant in comparison to the discrepancy between 
experimental and theoretical results. 
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