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Abstract—A model for isothermal homogeneous nucleation is proposed that improves the classical model.
A quasiequilibrium distribution of clusters was calculated on a basis of the Frenkel’-Lothe-Pound theory. The
dependence of the free energy of clusters on their size was represented by an interpolation formula relating the
free energy of dimers and large clusters to which a notion of macroscopic surface tension is applicable. The
nucleation rate and the dependence of the cluster temperature on their size were calculated by balance equations
describing the heating of from a cluster due to the condensation of monomers and its cooling due to collisions
with an ambient gas. It is shown that the nucleation rate in excess buffer gas is higher than for the pure condens-
ing gas by approximately two orders of magnitude. The model adequately describes the experimental data for

the nucleation of methanol supersaturated vapor.

INTRODUCTION

Starting from early fundamental studies described
in [1-4], building an adequate cluster model for the cal-
culation of the equilibrium size distribution of clusters
remains the mainstream research in nucleation theory.
This distribution is needed for the calculation of the
nucleation rate.

In the classical nucleation model, clusters are
viewed as macroscopic drops; the stability of the drops
depends on their size and the free energy of molecules
(atoms) in the bulk and on the surface. Note that,
despite its simplicity, the drop model in many cases
gives results close to experimental data. However, for
many systems, the difference between the nucleation
rate predicted by classical theory and its experimental
value reaches several orders of magnitude. Therefore,
researchers turned to the dependence of the specific
free energy on the cluster radius [5-9].

Lothe and Pound [10, 11] substantially advanced
nucleation theory when they pointed out that a drop in
the gas phase must have translational and rotational
degrees of freedom. The drop loses six degrees of free-
dom characteristic of an imaginary drop in the bulk of
the condensed phase. Lothe and Pound’s findings
formed the ground for the development of the molecu-
lar approach to the nucleation problem [12-18]. How-
ever, it should be mentioned that Frenkel’ [4, p. 348]
was the first to propose an expression for the quasiequi-
librium concentration of clusters that takes into account
translational and rotational degrees of freedom, but he
did not use this expression for the calculation of the
nucleation rate [4].

Another important problem in homogeneous nucle-
ation theory is the energy exchange between clusters

and ambient gas. In the classical model, the tempera-
tures of clusters and ambient gas are considered the
same. However, some experimental data and theoreti-
cal findings (see [7, 19] and references therein) show
that this is not the case. The process should be consid-
ered nonisothermic.

In our opinion, the nonisothermicity of homoge-
neous nucleation was analyzed in most detail in [19],
where nonisothermicity was taken into account by
solving a system of kinetic equations of the mass and
energy balance for water clusters consisting of less than
200 molecules. This approach enables the calculation
of the changes in the concentration and temperature of
clusters of each size with time and, consequently, the
flux (or the rate) of nucleation. However, the solution to
this problem involves much calculation and is not iltus-
trative. In this work, we derived an expression for the
rate of nonisothermic homogeneous nucleation, which
is a simple modification of the classical expression [7]
and automatically transforms to it when the tempera-
tures of clusters and the ambient medium are the same.

Predictive power of the model was illustrated by the
example of the methanol vapor nucleation. This com-
pound was chosen for the following reasons. One is that
comprehensive experimental data on the nucleation rate
over a wide ranges of temperatures and degrees of super-
saturation are available for this compound [20-22]. Fur-
thermore, some thermodynamic parameters of clusters
containing from 2 to 256 molecules were theoretically
obtained in [23-25], the accommodation coefficient for
the addition of a methanol molecule to the bulk of lig-
uid methanol at room temperature was calculated in
[26], and the concentrations of dimers and larger clus-
ters in methanol vapor were measured in [27, 28].
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THERMOCHEMICAL PARAMETERS
OF CLUSTERS

As already mentioned, the classical nucleation the-
ory is based on the drop model of clusters. In this
model, the basic parameter is the free energy of surface
tension. However, the applicability of this parameter to
small clusters, in which all or the most part of mono-
mers are on the surface, is problematic [7, 14]. (Hereaf-
ter, by a monomer is meant a single atom or molecule
comprising a cluster.)

Therefore, many researchers considered corrections
for the dependence of the specific free energy on the
cluster (drop) size [7, 8, 29-31]. Others attempted
avoiding the use of the free energy of surface tension
[14, 15, 17]. In these models, clusters are treated as
large molecules whose thermodynamic parameters can
be calculated by the methods of statistical mechanics.
This approach sounds most reasonable, although it is
difficult to put into practice: it is necessary to calculate
the frequencies, dissociation energy, and geometry of
clusters containing up to several thousands of atoms.
This can be done with molecular dynamics methods
(see [25] and references therein) but requires much cal-
culation.

An alternative approach is to construct interpola-
tions describing the free energy of clusters as a contin-
vous function of their size [8, 13, 14, 30]. The main idea
of this approach is the expansion of the free energy (the
chemical potential) of clusters in terms of their radii or
i3 (i is the number of atoms in the cluster). Ati =1 and
i = 2, this expansion should give the free energy of
monomers and dimers and transform into the expres-
sion for the free energy in the classical drop model
when i —» oo, However, as mentioned in [32], the
requirement to the interpolation formula to give the free
energy of monomers is physically unjustified because
monomers are not clusters. This is evident when mono-
mers are represented by atoms, which, unlike clusters,
have neither rotational nor vibrational degrees of free-
dom. Therefore, we used the idea of the approach
developed in [8, 30] but abandoned the extension of the
free energy interpolation formula to monomers.

In the description of thermodynamic parameters of
clusters, their translational, rotational, and vibrational
degrees of freedom and the partition function of substi-
tution were explicitly taken into account.

According to the mass action law, the equilibrium
concentration of clusters with a size of { can be calcu-
lated by the expression

¢ = qi(cl/ql,g)is (D

where g; is the partition function for the cluster contain-
ing i monomers, and g, , is the partition function for a
monomer in the gas phase. In expression (1), the mono-
mer concentration c, is determined by the experimental
conditions, and g, , is calculated by the standard proce-
dure [33]. An expression for g; can be derived within

the framework of a somewhat modified Frenkel’ -
Lothe-Pound method [4, 10, 11]. Let us represent a
cluster as a piece of the condensed phase having surface
and external rotational and translational degrees of
freedom. For this cluster, we can write [6]:

qi, transqi, rot( ql, g )
P LA I 2)
! qrep C1, sat (p,’

where ¢, , is a factor that accounts for the contribution
of the surface, c, ¢, is the concentration of monomer
saturated vapor, and g, is the partition function of
replacement. The partition functions for the cluster
over its external translational, g; ,.,, and rotational,
q; 1o degrees of freedom have the form [6]:

2. 15

qi,trans = (anmlkT/h ) ’ (3)

i = (BRIKT/HY) 1™, 4)

where [, is the inertia momentum of a spherical cluster
with a size of i

I, = (2/5)°m, vy (3/4m)*". )

Here, m, and v, are the weight and the volume of the
monomer in the condensed phase. The partition func-
tion of substitution is introduced to account for the loss
of six internal degrees of freedom by the cluster trans-
ferred from the condensed phase into the gas phase
[4, 10, 11], in which these degrees transform to three
translational and three rotational degrees (see below).

Combining (1) and (2), we obtain

qi, transqi, rot Cy ‘
¢ = cl, sat (Pi, s* (6)
cl,satqrep Cy, sat

The expression for c; is written in the form that is con-
venient for comparison with the classical formula.
Indeed, by setting the term in braces to unity and @, =

exp[—(36m)!B v} 6i?3/kT], where G is the free energ
y

of surface tension, we obtain the classical formula for
the quasiequilibrium concentration of clusters [34].
The correction to the partition functions for the surface
effects can be represented as [4]

0 = exp{ 02, o
where

G, = E (0)-TD, )]

D, =S, -LE (T)-E, (O)I/T. 9)

We postulate that, when i —» oo, G; (= Gi, E; (0)=E|i,
and @; ; = ®i;. Here, i is the number of surface mole-
cules; and G|, E,, and ®, are the changes of the free
energy, internal energy, and reduced thermodynamic
potential corresponding to the transfer of a molecule
from the bulk of the macroscopic condensed phase to
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A KINETIC MODEL FOR NONISOTHERMIC HOMOGENEOUS NUCLEATION 3

its surface. For methanol, whose vapor nucleation is
taken as an example to illustrate predicting capabilities
of the model, we obtained (from the data [35])

E, = 5.96 x 107> J/molecule, (10)

= (231 x 107"

1D
+1.84 x 107°T) J/molecule™! K-,

For dimers, the E, ; (0) and ®,  values can be deter-
mined from the experimental data [27, 28] or calculated
by statistical mechanics methods from the results of
quantum-mechanical calculations [23, 24].

We used the dissociation energy of dimers E, =
4.0 x 102 J/molecule; this value was obtained by
quantum- -chemical calculations in [24]). The frequen-
cies and geometry of dimers can also be calculated by
quantum-chemical methods; however, we have not
found such data in the literature. Therefore, we calcu-
lated the partition functions for dimers as follows. First,
we calculated the frequency of the stretching vibrations
of hydrogen bonds between monomers (CH;OH mole-
cules) on the assumption that the intermolecular poten-
tial is described by the Lennard-Jones formula:

18D, \°3
V= ( 2 22 ) g
T doC Mg

where D, is the dissociation energy of a hydrogen bond,
and m.g is the reduced mass, d; is the intermolecular
distance in the dimer, and C is the speed of light. We
obtained v = 145 cm™'. Then, we constructed three
models of dimers: rigid, normal (moderately rigid), and
loose. In the first case, all frequencies (except the inter-
nal frequencies of monomers) were taken equal to the
frequency of stretching vibration of hydrogen bonds. In
the second model (by analogy with known molecules
consisting of two identical groups, e.g., ethane mole-
cules), the frequencies of rocking and torsional vibra-
tions were respectively taken about two and four times
lower than the frequency of stretching vibrations of
hydrogen bonds. The distance between the centers of
molecules in dimers was taken equal to that for the con-
densed phase. The minimum inertia momentum was
taken equal to the double minimum inertia momentum
of methanol molecules. In the third model, each of two
monomers was considered freely rotating around its
axis; the spacing between the molecules was identical
to that used in two other models. By equating the parti-
tion functions obtained for these three models of
dimers to expression (5) at i = 2, we obtained three
equations for @, ;. In the temperature range considered
here, these equatlons can be approx1mated by the fol-
lowing expressions (in J molecule~! K-!):

(12)

@, = —(5.72+0.0144T) x 1072, (13)

®,, = —(1.52+0.0118T)x 107,

(14)
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= (11.6+0.0237T) x 107>, (15)

Ascan be seen, these expressions give different numer-
ical values but show similar temperature dependences.
With the use of the above value of the dissociation
energy of clusters, the best agreement between the cal-
culated and experimental [27] values of the concentra-
tion of dimers in methanol vapor was reached with the
model of moderately rigid dimers (the maximum devi-
ation was at most a factor of two, and, at room temper-
atures, close agreement was obtained). Therefore, in
the calculation of the nucleation rate, we used expres-
sion (13) without further fitting.

Note that a change in the thermodynamic potential
corresponding to the transfer of a monomer from the
macroscopic phase onto the “surface” of a dimer is neg-
ative. The problem is that, in the case of dimers, the
model of spherical clusters within our unified approach
yields substantially overestimates the value of the rota-
tional partition function. Because expression (14) was
obtained from the comparison with the “diatomic”
model of dimers, it takes into account this difference of
the rotational partition functions and the difference of
the frequencies in the macroscopic phase and in dimers.
To construct an interpolation function, we can use the
expansion in terms of cluster radii or else in the cubic
root of the number of monomers in clusters, i3, retain-
ing two first terms. The expansion is identical in its
form to the Tolman formula [5, 6]. Similar expressions
for the correction coefficient to the macroscopic energy
of surface tension were used in [29-31]. However,
physically, it seems more correct to express the dissoci-
ation energy not as a function of the number of mono-
mers i but in terms of the number of additions i — 1
required for cluster formation [13]. Thus, we have

E (0) = a+b(i-1)"+c(i-1)"

@, =di-1)""+e(i-1)". (17)

The coefficients a — e are chosen for the following rea-
sons. For large clusters (i —= o0), the excess free
energy should asymptotically approach the energy of
surface tension that is proportional to the number of
surface atoms. The coefficients at (i — 1)1 in (16) and
(17) are chosen so that, at i = 2, the formation energy of
clusters from the condensed phase is equal to the for-
mation energy of dimers at 0 K: E, ( =2E_ ((0) - E, at
®,; , = D, ;. Thus, we obtain

(16)

E(©) = B )+ (6w EG-1D"
+[Eoo,l(o)"(361t)]/3El_EZ](I'_1)1/3,
o = 360) D, (i - N
s (36m) Wi ) 19)

~[(36m) @, - @, 1(i-1)"",

where E., ((0) is the energy for the monomer abstrac-
tion from the condensed phase at 0 K, and E, is the dis-
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sociation energy of dimers at O K. The first term in
expression (18) is due to the fact that the first step in the
formation of clusters from the condensed phase is the
vaporization of the first monomer to which other mono-
mers are further added.

Note that, unlike the first term, whose physical
meaning is evident, the last term has ambiguous physi-
cal interpretation. Therefore, the last term in expres-
sions (18) and (19) can be represented in a more general
form by changing the power 1/3 for the fitting parame-
ter Y (0 <y < 2/3), which can be determined by the cor-
relation to experimental data or calculated by the
molecular dynamics method.

E.. (0) is determined from the condition that, at
equilibrium, the chemical potentials of the condensed
phase and the vapor are identical [33]:

W) = —kTln[q, /¢ el (20)
or, in the expanded form,
= —kTln ans ¥ vi
My (91, trans 91, rot1, vib @1

x exp(-E. 1(0)/kT)/ ¢, ),

where U, , is the chemical potential of monomers in the
condensed phase; ¢ s g1, o and Gy 4 are the trans-
lational, rotational, and vibrational partition functions
for monomers in the gas phase; and other designations
are standard or identical to those used above. Because
the energy is measured from the state of the condensed
phase at 0 K, 11, ; can be represented as [33]

T T
tii = [CopdT=T[(Cyp/THT, (22)
0 0

where C, , is the heat capacity of condensed methanol.
For methanol, the data on C, , at low temperatures (down
to 20 K) are available from [35]. However, for other com-
pounds, these data can be unavailable. Therefore, we used
a simplified method for the determination of C, . Taking
into account that, at absolute zero, C, , =0, the temper-
ature dependence of C, , can be represented as

C,, = AT+ BT’ (23)

The coefficients A and B were determined from tabu-

T
lated C; , values and the entropy S° = I C,,,/T)dT for
0

the liquid phase at 298 K. The C, , value determined
from the temperature dependence thus obtained for
methanol were close to the tabulated data [35]. More-
over, the E_, ,(0) values determined by expression (21)
over a wide temperature range (220-290 K) were virtu-
ally identical (E., ;(0) =7.17 x 102 J/molecule), which
indirectly supports the correctness of the method.

The partition function of replacement was calcu-
lated according to Frenkel’ [4, p. 347] on the basis of
the chemical potential taken over six vibrational

degrees of freedom for the condensed phase. In clus-
ters, as in the liquid, each molecule is characterized by
the internal (vibrational) degrees of freedom the hin-
dered rotational degrees of freedom (torsional vibra-
tions), and Debye-type vibrations. In atomic liquids,
the first two types of degrees of freedom are absent. It is
clear that the number of vibrational and rotational
degrees of freedom in clusters is identical to that for the
condensed phase with the same number of molecules.
Thus, the transfer of a cluster from the condensed to gas
phase results in the disappearance of the Debye-type
vibrations. However, calculation by the equation [4]

S\-1
W /n= —len[l —exp(h—v)} ,

kT @4

(here, n = 3, 5, and 6 for atoms, linear, and nonlinear
molecules, respectively; the formula takes into account
that the energy is measured from the state of the con-
densed phases at O K) shows that the average frequency
is close to the Debye frequency (e.g., for methanol, the
difference varies within 20-30% depending on the tem-
perature). The Debye frequency was calculated by the
standard procedure [33]; the velocity of transverse
waves was taken equal to half the velocity of longitudi-
nal waves. Note that v characterizes the average fre-
quency of the Debye and hindered rotational vibrations
of monomers in the condensed phase because, at the
temperatures characteristic of the nucleation study,
internal rotational degrees of freedom of monomers are
virtually hindered. Thus,

Gy = [1 —exp(’,j—;)]_6 = expl-6L, /(nkT)], (25)

where W, | can be calculated as described above or
taken from published data.

KINETIC NUCLEATION MODEL

In classical nucleation theory, the growth of clusters
is represented as a set of consecutive steps of addition
and vaporization of molecules. The growth due to col-
lisions between clusters is not considered, which is evi-
dently true when the concentration of clusters is much
lower than the concentration of monomers. This prob-
lem was recently considered in {36}, and I will briefly
discuss it at the end of this article.

According to [4],

dfi/dt=‘,i-l_']i7 (26)
where J;_, is the flux of clusters at the point i, i.e., the
number of clusters in unit volume transferred along
the size axis from the point i — 1 to the point i per unit
time:

Jioy = k:nlni—l_k;’—(Ti)ni- 27
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Here, n,, n;_,, and n; are the concentrations of mono-

mers and clusters; and k,f and k; are the rate constants

of the formation and vaporization of clusters with a size i.
In classical nucleation theory, the process is considered
steady-state. For this purpose, it is assumed that suffi-
ciently large clusters G + 1 (with a much larger size
than the critical) are instantaneously removed, and G + 1
monomers come into the system instead of each of the
removed clusters. Thus, the concentrations of mono-
mers and clusters are time-independent; mathemati-
cally, this corresponds to the condition df//dr =0 (i =2,
3,4,...,G)or

.12=J3=J4=...=Ji=...=JG=J‘ (28)

Because nucleation releases heat, it is evident that
the temperature of clusters will be higher than the tem-
perature of the ambient gas. Let us assume that the tem-
perature of clusters varies with their size and is identi-
cal for all clusters of the same size [19]. Let us also
assume as usual [7] that the accommodation coefficient
¢ for the addition of a monomer to a cluster does not
depend on the cluster temperature. In this case, the
vaporization rate V; for the cluster with the temperature
T, can be represented as

ki(T)) = ki (T)V(T, T)),
VAT, T,) = expl(E, (1/T-1/T)/k],

29
(30)

where k; (T) is the vaporization rate constant for the

cluster at the ambient gas temperature, E, ; is the effec-
tive activation energy, k is the Boltzmann constant, and
T; is the temperature of clusters with a size of i.

To calculate the steady-state nonisothermic nucle-
ation rate, let us use the set of algebraic equations

J = kynyn, —k;Von,,

3D

........................

The last equation involves a single term because,
according to the formulation of the problem, the clus-
ters of the size G + 1 are instantaneously removed, and
their concentration is equal to zero. Using the designa-
tion U; = n;/c;, where c; is the equilibrium concentration
of clusters of the size i at the concentration of mono-
mers n; = ¢, and the condition for thermodynamic
equilibrium

1
>~

kjclci—] = k;c;, (32)

we arrive at

........................
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J/(kz-clci—]) =U, -U}V, (33)

J/(k:;+lCICG) = Us.

Ati=2,U;_, =n)/c; =1 by definition. Upon multiply-
ing the first, second, third, and last equations by V, = 1
(it is assumed that the temperature of monomers is
equal to the temperature of the gas), V,V,, V,V,V;, and

l_LG= , V. respectively, and summing the left-hand and
right-hand sides of equations (33), we have

Ji[[ﬁVjJ/(kL,c,c,-)} =1

i=1L\j=1

G i -1
J = {ZK v,.]/(k,l,clc,.)}} ) (35)
i=1L\j=1

At the constant temperature of clusters equal to the
temperature of ambient medium, V;=1ati=2,3,4, ...,
G, and expression (35) transforms into the classical for-
mula for the nucleation rate. Under nonisothermic con-
ditions, V; > 1, and, as is easily seen from (35), the
nucleation rate is lower than for isothermal conditions.
This is reasonable because, for overheated clusters, the
rate of the reverse process of their vaporization is
increased.

(34

or

To use formula (35), the k;, ,, ¢;, and V; parameters

should be known. The parameter k;,, can be repre-

sented as a product of the collision-frequency factor of
the cluster (the monomer at [ = 1) with monomer mol-
ecules by the accommodation coefficient €; we used
€ =0.8 [26]. Thus,

kI(T) = €Z,(300)(T/300)"%*". (36)

The collision frequency factor at 300 K, Z,(300), was
calculated by the standard procedure [37]. The equilib-
rium concentrations were calculated by formula (6)
from the preceding section.

To calculate V,, it is necessary to know the effective
activation energy of vaporization of the clusters, E,
and their temperature T; (it is assumed that the temper-
ature of the ambient gas is given). We calculated the
effective activation energy by the equation [38]

E,, = RT’[d(Ink;(T))/dT], (37)

where
k;(T) = ki (T)cyei_ic;', (38)

and c,, ¢;_, and c; are the given concentration of mono-
mers and the respective equilibrium concentrations of
the clusters.
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To calculate the temperatures of clusters of each size
T;, material balance equations (31) should be supple-
mented by energy balance equations. In the general
case, these equations are similar in their form to the
equation used in [19]. However, in this work, I explic-
itly took into account the fact that the temperature of
vaporizing monomers is equal to the temperature of
clusters, i.e., higher than the temperature of ambient
medium. We also used a different method for the calcu-
lation of the heat transfer rate from clusters to mole-
cules of a buffer (noncondensable) gas (the method is
based on the stepwise activation model, which is often
used in the theory of monomolecular reactions).

The temperature of clusters can be calculated by
two methods: either as in [19] (see Appendix) or in a
simpler way as described below. Let us consider a rep-
resentative cluster moving along the size axis. The time
it resides in the group of clusters of size i is

Ti = ni/.,, (39)

where n; is the concentration of clusters of size i, and
J is the nucleation flux. During this time, the represen-
tative cluster takes part in a certain number of decom-
position acts to form a cluster of size i — 1 and the same
number of the formation acts (not counting the act, in
which this cluster was originally formed). Because the
temperature of the cluster is higher than the tempera-
ture of the ambient gas, each pair of the decomposi-
tion—addition acts will take away some portion of the
energy from the cluster:

AQ = Cp, g(Ti - T)‘ (40)

Thus, the heat removed from the cluster via this mech-
anism for the time 7; is

Quap, (T, T)) = [C, (T, =Tk Viiny,/ 1. (41)

The cluster can also lose heat via collisions with mole-
cules of the buffer (noncondensable) gas; the energy
thus removed for the same time is

Quur, (T, T)

exp(AE/k(1/T-1/T))-1
exp(AE/K(1/T=1/T )+ 1

42)
n;/J,

= {Z,-[M]%AE

where Z, is the factor for the frequency of binary colli-
sions, [M] is the concentration of the buffer gas, and
AE is the energy removed at each step of the energy
transfer within the framework of the step-ladder model.
The term in braces was obtained in the framework of a
modified step-ladder model [18] used in the theory of
chemical and photoactivation [39].

Because the energy removed during a single nucle-
ation act (the advance of the cluster by one step on the
size scale) under quasistationary conditions must be
equivalent to the heat evolved, the balance equation can
be written as

J = Fn, 43)
where
F. = Cp,g(Ti— T)kl-vl
t L
AE/k ll/T /T )

3L, exp(AE/k(1/T-1/T )+ 1"

The evolved heat is L; = E; — h; (T) + h,, «(1), where
E; is the energy of the monomer abstraction from a
cluster of size i at 0 K, and h, (T) and h, (T) are the
enthalpies per molecule in the liquid and gas phases,
respectively.

Using (31), (32), and (43), we obtain the recurrent
formula for F;:

k:Viclci-l)_l
Fic; '

The clusters of the largest size (G) are not formed by
the decomposition of clusters of size G + 1 because
these clusters, according to the problem formulation,
are instantaneously removed, and their concentration is
equal to zero. Hence,

F_, = k,.*cl(l + (45)

J = kg ning (46)
and, with the allowance for (43), we obtain
Fg = kgyn. 47)

The temperature of clusters of each size was calculated
as described below. By equating (44) to 47) at i = G
and solving the respective transcendental equation, we
determined the temperature T;. Then, we find Fg_,
using recurrent formula (45) by equating it to (44) at
G - 1, and determine T,;_,. The recurrent procedure
was repeated until the size of dimers (i = 2) was
reached. The V; values are calculated in parallel. The
summation in (35) was performed in the reverse order,
from i = G to i = 2. Therefore, to calculate the depen-
dence of the temperature on the cluster size and the
nucleation rate in one calculation, we transformed (35)
into the form

[[HVJE( e h Vfﬂ_l- (48)

i=G j=1+1

For the sake of retention of the structure of addition
terms, we formally set V, | = 1. It is clear that this will
not affect the product under the summation sign, as
well as the fact that the product is taken from j = 2
instead of j = 1 because V, = 1 (see above).

RESULTS AND DISCUSSION

In the calculation of the nucleation rate of methanol
supersaturated vapor in the framework of the above-
described model, we used the following parameters:

KINETICS AND CATALYSIS  Vol. 41
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Density (§/0m3), dye = 0.81015 — 1.0041 x 1073x —
1.802 % 10°5x* — 16.57 x 10-%3, where x =T —273.15 [31].

Pressure of saturated vapor (bar), P, = exp(58.434 —
6341.267/T - 5.61InT) [31].

Surface tension (mJ/m?), 6 =36.59 — 1.417 x 10T —
1.32 x 10*T? (the interpolation of the data [35]).

Enthalpy and the heat capacity of liquid methanol at
298.15 K (both in J mol-' K'), §° = 126.7 and C, =
81.6 [40].

Accommodation coefficient, € = 0.8 [26].

Energy of the monomer abstraction from the meth-
anol macroscopic phase at 0 K, E.. ;(0) = 43.16 kJ/mol.

The energy step in the step-ladder model of the
energy transfer by collisions of a cluster with argon
atoms, AE = RT.

The only fitting parameter in the model is y, which
characterizes the degree of the deviation of the free
energy of a cluster from that used in the drop model. We
could take y = 1/3 as in (18) and (19); however, in this
case, the free energy of dimers would not agree with the
experimental data. Moreover, as noted above, there is
no physical reason to set y = 1/3. We fitted the model to
the results of a single experiment (no. 3 in the table) and
obtained y = 0.41. It will be of interest to see further
whether this value is correct for other systems. The J
values calculated with y= 1/3 are on the average higher
by two orders of magnitude.

Figure 1 compares the dependence used here for the
reduced dissociation energy of clusters calculated per
molecule versus the cluster size and the results of theo-
retical calculations. As can be seen, the scatter of values
obtained by different methods is rather high. Note that
dependence (18) used in this work represents some
averaged trend.

The calculated values of the nucleation rate for
methanol supersaturated vapor are correlated to the
experimental data [20] in the table. The measured and
calculated values are in good agreement, especially tak-
ing into account that the experimental data and the pre-
dictions of classical nucleation theory are different. At
first sight, the situation seems paradoxical: classical
theory does not take into account external degrees of
freedom of clusters; therefore, it should give a lower
concentration of critical clusters and, consequently, a
lower nucleation rate in comparison with those
obtained in the framework of our model. However, as is
seen from Fig. 2, the dependence for the free energy in
(7) calculated in the framework of our model is far
above that for the classic model; this explains the
apparent difference.

The developed model also adequately describes the
experimental data on the dependence of the critical
degree of supersaturation (s) on temperature (Fig. 3)
obtained in a diffusion chamber (J ~ 1 cm™ s71). The
observed difference between the experimental data and
the predictions of our model is possibly explained by
the fact that, under conditions of slow nucleation, the

KINETICS AND CATALYSIS Vol. 41

No. 1 2000

E; 4is/iE 1(0)
1.0r

0.8

0.61

04

0.2¢

Fig. 1. Effect of the cluster size on the dissociation energy
of methanol clusters calculated per monomer and divided by
the vaporization energy per molecule for the bulk of metha-
nol. The solid line represents the results of calculation by
expression (18) (this work); the dashed line corresponds to
Monte-Carlo calculation [25]. The data of quantum-chemi-
cal calculation (7) [23] and (2-4) [24] were used.

G; JkT
400 i

7
- 1 1

100

1 J
150 200
i

Fig. 2. Effect of the cluster size on the free energy of meth-
anol clusters at (7, 1') 229.31 and (2, 2") 274.63 K. Solid
lines represent the results of calculation by the model pro-
posed in this work; dashed lines correspond to the drop
model.

system is highly sensitive to the presence of foreign
condensation nuclei [7].

The curves for the quasiequilibrium (c;) and quasis-
tationary (n;) concentrations of clusters and overheat-
ing AT; = T; - T as functions of the cluster size are pre-
sented in Fig. 4 for the two limiting cases: high super-
saturation at a low temperature and low supersaturation
at a high temperature (see the table, experiments 12
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Fig. 3. Critical degree of supersaturation for the condensa-
tion of methanol in a diffusion chamber vs. temperature.
The experimental data from (/) {21] and (2) [22] are shown
by different points. The solid line represents the results of
calculation by the model developed in this work; the dashed
line corresponds to classical model [21].

and 8). As seen from Fig. 4, the deviation of the temper-
ature of clusters from the temperature of the ambient
gas becomes noticeable in the region of critical sizes
and increases with increasing the number of atoms in
clusters. A deviation of n; from c; is observed in the
same region. Physically, this means that, in this region,
due to low cluster concentrations, there is a noticeable
resistance to the nucleation flux. In the undercritical
region characterized by a high concentration of clus-
ters, the forward and back processes are virtually in
equilibrium; therefore, n; and ¢; coincide very closely.

Figure 5 demonstrates the effect of the concentra-
tion of the buffer (noncondensable) gas on the nucle-
ation rate for the same limiting conditions (table, exper-
iments 12 and 8); these conditions were used in [20] in
the measurement of the nucleation rate. (In Fig. 5, the
nucleation rate is related to the respective value
obtained for the isothermal model of the process.) The
effect is of two orders of magnitude. At high concentra-
tions of the buffer gas, the temperature of the clusters is
equal to the temperature of the ambient gas. As the
buffer gas concentration is decreased, the situation
changes and, in the limiting case, only the molecules of
condensing gas (monomers) are responsible for cool-
ing. Figure 6 presents temperature profiles as functions
of the cluster size at different degrees of dilution. It is
seen that, even at a methanol concentration of about
10-'-10-2%, the temperature of clusters differs from the
temperature of the ambient gas; as a consequence, the
nucleation rate decreases.

It is of interest that, in the vicinity of the limiting
size G, especially at i = G, the temperature of clusters
sharply increases. This is due to the fact that, in this

3

logc;, logn;, cm™

-5 1 ] 1 )
301
(b)

/

25F /
/
200 /
I,

15k /

10

|
200
i

1 |
0 50 100 150

Fig. 4. Curves for the (7) quasiequilibrium (c;), (2) quasi-
stationary (n;) concentrations, and (3) the overheat AT; of
methanol clusters relative to the ambient gas as functions of
the cluster size at (a) T = 274.63 K and s = 2.39 and
(b) T=229.31 K and s = 4.07 (table, experiments nos. 8
and 12).

region, the concentration of clusters decreases with the
size more sharply than far from G (see Fig. 4) because
of the removal of clusters of size G + 1. Therefore, the
rate of back processes decreases, and clusters are
highly overheated. A change in the G value is accompa-
nied by a respective shift of the region of the increased
overheat. Note that, in the region G > 2i*, where i* is
the critical size, the changes in G virtually have no
effect on the nucleation rate under both isothermic and
nonisothermic conditions.

The calculation shows that the effect of the overheat
only slightly depends on the degree of supersaturation
(Fig. 7). This is probably because the nucleation rate is
proportional to the concentration of clusters in the crit-
ical region [4, 7]. In this case, the heat loading of a clus-
ter virtually remains unchanged.
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Fig. 5. The effect of the dilution (with argon) on the nucle-
ation rate of methanol vapor at two limiting temperatures
and degrees of supersaturation: (I) T = 274.63 K, s = 2.39,
and (2) T=229.31 K, s =4.07. The points in the curves cor-

respond to experiments 8 and 12 from the table.

To estimate the contribution from the collisions
between clusters into the total nucleation flux, I calcu-
lated all collisions between clusters that lead to the for-
mation of overcritical clusters. The maximum contribu-
tion of these collisions is equal to ~20% of the flux that
is due to the consecutive addition of monomers. How-
ever, this value is substantially overestimated because it
does not take into account the backward flux from the

AT, K
8 —

100 150 200

1

Fig. 6. The effect of the dilution (with argon) on the profile
of the overheat (AT;) of methanol cluster against the cluster

size: [CH;OH)/[Ar] is equal to (1) 107

and (4) oo,

L (2) 1073, (3) 1072,

overcritical region, especially when we consider that
the basic contribution into the additional flux is due to
the addition of dimers to the precritical clusters of size
i* — 1. For water, the contribution of cluster—cluster col-
lisions is 10% [36].

The number of parameters in the developed model is
greater than for its predecessors. In particular, it addi-

tionally

includes thermochemical

parameters of

The experimental [20] and calculated values of the nucleation rate J for methanol vapor (J; and J,, are the results of calcu-
lations by classical theory [20] and the mode! proposed in this work, respectively)

- Jex Jiw Ja - J X Jiw Jai
E;]‘;it " e : cm3s™! rl;:;]%it " e - cm™>s7!
1 261 272021 80x107 | 1.ox108|1.5x10"7|| 14 334 [ 23186 [24x10°]25%x10*[3.5x%x 1010
2 | 266 [271.4923x108[32x10%[2.7x107| 15 3.73 [23832147x10% | 1.5x10% |5.0x 104
3 271 27086 | 8.4x 108 | 8.4x10% |49 x107|[ 16 3.82 (23798 | 1.8x10%|3.9x10° [7.7x 10"
4 2.58 (27232 39x107 | 48x107 [1.0x 10| 17 3.62 |238.75|24x10% | 3.9x%x10% |2.0x 10"
5 2.54 27286 | 1.1x107 | 1.8x107 [6.3x10'%]| 18 334 | 23998 | 6.7x10°| 7.3x10°|1.6x 10"
6 248 |[273.46 | 3.0x10° | 3.3x10% |2.6 x 10| 19 322 | 24051 | 1.2x10%| 9.1 x 10° [ 4.4 x 10'2
7 | 244 [27402[94x10° | 1.1x10° [1.5x 10| 20 | 3.07 |241.22 | 1.3x10° | 4.6x10* | 6.9 x 10!!
8 | 239 |27463|19x10°]22x10° |63 x105| 21 321 | 25547 | 75%x10% | 7.4x10° | 6.6 x 10'6
9 | 365 [230.72]23x107|3.7x10°|1.1x102]| 22 | 3.14 |25591|3.6x108|2.6x10° |3.7x 106
10 | 3.79 {23025 |74x107 |24x107 |40x102|| 23 | 3.00 |256.81 |2.7x107 | 25%10%(9.4x 10"
11 390 |229.87 |45x10% [ 8.8x107 [1.1x103]| 24 | 292 |257.34|53x10°|54x107 |3.8x 105
12 | 407 [22931(1.9x10°|53x108%[37x1013| 25 | 282 |258.00|7.5%x10°|3.6x10°|1.2x 10
13 | 349 23129 |2.8x10°|34x10° [ 1.6x 10"
* s is the degree of supersaturation.
KINETICS AND CATALYSIS  Vol. 41 No.1 2000
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Fig. 7. The nucleation rate vs. supersaturation for the infi-
nitely dilute mixture (the solid lines) and pure methanol
vapor (the dashed lines) at (/) 274.63 and (2) 229.31 K.

dimers. However, because of widespread use of quan-
tum-chemical calculation methods and due to the
improvement of experimental methods for the investi-
gation of small clusters, we may expect that these data
will become readily available in the future. Purposeful
experiments on the effect of the nature and the pressure
of buffer gases on the nucleation rate are of great inter-
est for further model testing. I plan to use this model for
the description of nucleation in vapors of substances of
different types.

APPENDIX

As seen from the above, the nucleation rate was
determined on the assumption that the heat liberated at
the elementary step of passing from the size i — 1 to i is
removed from only the cluster with a size of i. This
means that the heat flux between clusters, whose sizes
differ by unity, was ignored. A more rigorous consider-
ation can be performed with the use of the enthalpy bal-
ance equations similar to those used in [19]:

dln:h(T))1/dt

= By [Ei+ by (Ti21) + hy o(T)]
=0 E + hy_(T)) +hy o(T)}=Bin,{hy(T))]

+ 0 1 [RA(T i )] = Qo (T, TiIn; = 0,

(49)

+ + -
where B,_; = kiny, B = kiyyny, o = ki V, 0y =

kit Viess ki (Ti2 ), hio (T, h(T}), and h(T;,,) are
the enthalpies of the clusters with sizes i — 1 and i at
respective temperatures (at the points i — 1, i, and i + 1);
and E; is the energy of monomer abstraction from a

cluster with the size i. Oy (T, T;) is given by the
expression

Qbuf, i(Ta TI)
2AEexp(AE/k(1/T-1/T))~-1
3L; exp(AE/k(1/T-1/T))+ 1’

= Z,[M] ©0)

where L; = E; — hy (T) + hy (T). Equation (49) was
derived on the assumption that, in the decomposition of
a cluster, the temperatures of the monomer and a
smaller cluster are equal to the temperature of the initial
cluster. This assumption is based on the model of
homogeneous energy distribution used in the theory of
unimolecular reactions [41].

Finally, we arrive at
JIE;—hy (T) + hl,g(T)]
— o[ Cy o (T; = T)] = Quus, T, T,
+{Bin;Cyi(Ti —T))
—onCy (i -INT;-T;_)} = 0.

In equation (51), the expression in square brackets does
not take into account the difference between the enthal-
pies of the monomers at the temperatures of the cluster
and ambient gas. The heat capacity of the cluster was
represented as a product of the number of monomers in
the cluster and the heat capacity of monomers in the
condensed phase C; | [19]; as shown by Monte-Carlo
calculation [25], this is a rather good approximation.

Expression (51) can be rewritten as

5D

J = (F;+AF)n,, (52)
where F; is determined by expression (44), and
AFi = {ainic (i"l (T,'—T,'_
1,1 ) l) (53)

- Binicl, i(Ti—-TH Y/ L,

As can be seen, expression (52) differs from simpli-
fied expression (43) by the additional term AF,. Expres-
sion (43) was derived on the assumption that the energy
released by clusters of a given size is entirely removed
into the ambient gas, but it is not transferred to clusters
of nearest sizes. The additional term accounts for the
energy transfer that occurs along the size scale.

To estimate this effect, I first calculated the depen-
dence of the overheat (T; - T) on the size i by simplified
formula (43) and approximated the (T; - T) vs. i depen-
dence by the expression

(T,-T) = a'exp(-bi™). (54)

This expression provides us with a rather close approx-
imation for the (T;~ T) vs. i dependence. We substituted
the dependence obtained into (53) and used (52)
instead of (43) to calculate the nucleation rate and the
dependence of (T; — T) on i. For all experiments pre-
sented in the table, the effect of the term in braces in

KINETICS AND CATALYSIS  Vol. 41 No. 1 2000
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(53) on the nucleation rate is within 30%, which is
insignificant in comparison to the discrepancy between
experimental and theoretical results.
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